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Abstract. A SU(2) effective Lagrangian is extended to a SUL(3) ⊗ SUR(3) by including the vector and
axial vector meson. With this effective Lagrangian, electromagnetic form factors of charged pion and kaon
are calculated in both time- and space-like regions. The pseudoscalar meson loops are taken into account.
Good agreement with experimental data is obtained for those form factors and charged pseudoscalar meson
radii. Decay widths of ρ → ππ and φ → K+K− are also calculated and shown to agree with experimental
data very well.

PACS. 12.39.Fe Chiral Lagrangians – 12.40.Vv Vector-meson dominance – 13.40.Gp Electromagnetic
form factors – 14.40.Ev Other strange mesons

1 Introduction

At energy below 1 GeV, the vector meson plays an im-
portant role in electromagnetic interactions of the hadron.
The vector meson dominance model (VMD) has been
proved remarkably successful in the description of electro-
magnetic form factors and decays of the hadron, although
it is a phenomenological approach. Many approaches, such
as the hidden gauge symmetry approach (HGS) [1], the
massive Yang-Mills approach (MYM) [2], and so on, have
been developed to include the vector meson in a funda-
mental manner. By taking higher-order terms into ac-
count, redefining suitable field and adjusting parameters,
all of the model can be shown to be equivalent [3]. How-
ever, a simple addition of higher-order terms is not a con-
venient method for those calculations. In our previous pa-
per [4], we have proposed an effective chiral Lagrangian for
the description of vector and axial-vector mesons by con-
sidering all the relevant symmetries and the low-energy
constraints from chiral perturbation theory (ChPT). In
that paper, relevant experimental data are reproduced
with only mass terms and kinetic terms of spin-1 me-
son fields. The spin-1 mesons are introduced in the non-
linear realization of chiral symmetry, with which it is easy
to check consistency with chiral perturbation theory. In
constructing our model Lagrangian, we have stressed sim-
plicity. Only mass terms and kinetic terms of spin-1 me-
son fields are necessary to meet experimental results. In
some approach, such as O(p4) expansion of ChPT, L2 La-
grangian gives loop contribution as well known [5], which

a e-mail: cheoun@phya.snu.ac.kr

helps a good phenomenological description. But our effec-
tive Lagrangian theory, which is aimed for large energy
process, uses O(p2) expansion because most of the higher-
order contributions in other approaches are incorporated
by a single change in the kinetic terms of vector field with
only one parameter in our model. Since full reviews con-
cerning effective theories and their relationships to other
approaches can be found in other papers [2,3], we skip
them here.

In this paper our previous Lagrangian, with a brief
summary, is extended to SU(3) in section 2. In section 3,
the electromagnetic pion and kaon form factors and some
related decays with this Lagrangian are presented with
detailed discussions. A brief summary is done in the final
section.

2 Lagrangian

Our Lagrangian consists of a pseudoscalar meson sec-
tor L(π), a spin-1 vector and axial vector meson sector
L(V,A), and a term of interactions with scalar particles
Ls, which comes from mass splittings in SU(3) extension,
i.e.,

L = L(π) + L(V,A) + Ls. (1)

The Lagrangian for the pseudoscalar meson sector, which
is a leading Lagrangian of the ChPT, is given as

L(π) = f2

4
〈DµU†DµU〉+ f2

4
〈U†χ+ χ†U〉 , (2)

DµU = ∂µU − i(vµ + aµ)U + iU (vµ − aµ) , (3)
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where bracket denotes a trace in flavor space, f is a
pseudoscalar meson decay constant, chiral field U =
exp(i2π/f) with π = T aπa, T a = λa/2 (a = 1, 2, ...8).
External gauge fields are introduced via vµ and aµ. The χ
is defined by χ = 2B0(S + iP). Explicit chiral symmetry
breaking due to current quark masses can be introduced
by treating those masses as if they were uniform external
scalar field S [3].

Under a local SU(Nf )×SU(Nf ) gauge transformation,
U → gRUg

†
L, χ and Dµ transform as U does. The above

Lagrangian is invariant, provided that the external gauge
fields transform as

vµ + aµ → gR(vµ + aµ)g
†
R − i∂µgR · g†

R ,

vµ − aµ → gL(vµ − aµ)g
†
L − i∂µgL · g†

L ,

S + iP → gR(S + iP)g†
L . (4)

The non-linear realization of chiral symmetry is expressed
in terms of u =

√
U and h = h(u, gR, gL) defined from

u→ gRuh
† = hug†L. In this realization, we naturally have

the following covariant quantities:

iΓµ =
i

2
(u†∂µu+ u∂µu

†)

+
1
2
u†(vµ + aµ)u+

1
2
u(vµ − aµ)u† ,

i∆µ =
i

2
(u†∂µu− u∂µu

†)

+
1
2
u†(vµ + aµ)u− 1

2
u(vµ − aµ)u† ,

χ+ = u†χu† + uχu , (5)

whose transformations are carried out in terms of h, i.e.,
Γµ → hΓµh

† − ∂µh · h†, ∆µ → h∆µh
†, and χ+ → hχ+h

†.
With these quantities, the Lagrangian in eq. (2) can be
rewritten as

L(π) = f2〈i∆µi∆
µ〉+ f2

4
〈χ+〉. (6)

As for the massive spin-1 mesons, we include only the mass
and kinetic terms [4]

L(V,A) = m2
V〈(Vµ − iΓµ

g
)2〉+m2

A〈(Aµ − ir∆µ

g
)2〉

−1
2
〈(GVµν)2〉 − 1

2
〈(Aµν)

2〉 (7)

with

GVµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ]− iG[Aµ, Aν ] ,
Aµν = ∂µAν − ∂νAµ − ig[Vµ, Aν ]− ig[Aµ, Vν ] , (8)

where Vµ = T aV a
µ (Aµ = T aAa

µ) denotes spin-1 vector
(axial-vector) meson field and g denotes a V ππ coupling
constant. The chiral transformation rules of spin-1 fields
are expressed in terms of h

Vµ → hVµh
† − i

g
∂µh · h† , Aµ → hAµh

†. (9)

Note that we have introduced a new form of GVµν . The
chiral symmetry is preserved for any value of G at chiral
limit in GVµν , so that the value of G cannot be determined
from the chiral symmetry. If G is equal to g as in the HGS
approach, the result may reproduce experimental data by
including other higher-order terms.

The Ls term is introduced in the following way. It con-
siders effects coming from mass splittings of strange and
non-strange particles in terms of interaction Lagrangians
between scalar particles and other mesons (pseudoscalar,
vector and axial-vector mesons). In the presence of the in-
teraction, scalar particle field S satisfies the Klein-Gordon
equation S∂µ∂

µS +MsS2 = −2SJ , where SJ is a source
term for the S-field due to the interaction. If we assume
that the kinetic term of the scalar particle is small enough
to be neglected because it is massive [18], and integrate
out the S-field from the generating function,

ZS =
∫
dS exp

(∫
[Ms(S + J

Ms
)2 − J2

M2
s

]
)
, (10)

the resulting Lagrangian is expressed as follows:

Ls =
1
M2

s

〈J2〉 = 1
M2

s

〈J ′2 + 2JvacJ
′ + J2

vac〉 , (11)

where

J ′ = (J − Jvac) =

−Ms

4
sm
2B0

f2
(π2M +Mπ2 + 2πMπ) +Msj ,

j = sd(i∆µ)2 + sV(gVµ − iΓµ)2 + sA(gAµ − ir∆µ)2

+sr{i∆µ, gAµ − ir∆µ} ,
Jvac = MssmB0M . (12)

HereM is the current quark mass matrix (we assume that
masses of u and d quarks are equal), which is given as

Ma = 2B0(
Da

2
√
3
α+ β),

Da

2
√
3
α+ β =



m, for a = 1, 2, 3
1
2 (m+ms), for a = 4, 5, 6, 7
1
3 (m+ 2ms), for a = 8 .

(13)

B0 is a constant related to the scalar quark condensation.
j stands for the interaction, on which sd, sV , sA, sr, and
sm are free parameters. It should be noted that the above
Lagrangian consists of an interaction between scalar and
pseudoscalar (MsπM...), scalar and vector mesons (Msj),
and contributions from the vacuum (MsB0M). In eq. (11),
we only consider the terms with double and triple field
products, so that we can write down Ls as follows:

Ls ∼ −1
2
(
sm

f
)2(M̃)2a(π

a)2 +
1
2
smMaj

a, (14)

where M̃2
a =

1
6 (2B0α)2δ8a +M2

a .
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2.1 Mixings

There are some unphysical mixings in the Lagrangian,
which can be removed by field redefintion. First, let us
consider a nonet mixing. For vector bosons the nonet sym-
metry is good more or less. To simplify the calculation, we
use this symmetry i.e., ω and φ mesons are written as [11]

ωµ=

√
2
3
ωµ1+

√
1
3
V 8

µ , φµ=

√
1
3
ωµ1−

√
2
3
V 8

µ . (15)

For the mixing between axial vector mesons and pion
fields, we define A

′
µ as

Aµ = A′
µ − r

gf
∂µπ. (16)

Through this field redefinition, a new term which is not
renormalizable appears in the kinetic part. Therefore, in
order to keep the kinetic terms the same as before under
this field redefinition, we also redefine the vector meson
field as follows [7]:

Vµ = V ′
µ − Gr2

2g2f2
fabcπ

b∂µπ
c. (17)

Finally, we consider the mixing between the vector meson
and a photon field. The photon field enters through the
external vector field vµ = eQAem

µ , where Q = T 3 + Y
2 .

The unphysical mixing related to the photon field can be
removed by the following field and charge redefinitions [8,
9]:

Vµ → V
′
µ +

e′

g
QAem′

µ ,

Aem
µ → Aem′

µ

√
1− e′2

g2
Q2 ,

e → e
′
/

√
1− e′2

g2
Q2 .

2.2 Effective Lagrangian

In expanding our Lagrangian, we choose only the pho-
ton, pseudoscalar meson and vector meson parts. The La-
grangian is, then, simply summarized as

L = 1
2
m2

VaVµV
µ

+
m2

Va

2gf2
a

(1− Gr2

g
)fabcV

a
µ π

b∂µπc

+eQfabcA
a
µπ

b∂µπc

−1
4
(∂µVν − ∂νVµ)2 − 1

4
(∂µAν − ∂νAµ)2

− e

2g
(∂µVν − ∂νVµ)(∂µAν − ∂νAµ)

−1
2
m2

πaπ
aπa +

1
2
∂µπ

a∂µπa, (18)

where m2
Va = g2(f2

V + smsvMa) and Vµ and Aµ stand for
the redefined fields V

′
µ and A

em
µ

′
. In order to determine

pseudoscalar meson mass and decay constants, we exploit
the following covariant quantities:

m2
πa = (Ma + (

sm

f
)2M̃a

2
)/Z2

πa , fa = Zπaf ,

with Z2
πa = (1 + smsd

Ma

f2
) . (19)

Mass splitting between non-strange particles and
strange particles is generated from the interaction of these
fields with a scalar field which is given by eq. (14).

2.3 Comparison with ChPT

For processes with small momentum transfer, massive
degree of freedom can be integrated out leaving an effec-
tive Lagrangian of pions and external fields, which can be
compared with the Lagrangian of ChPT. By this compar-
ison, we can check consistency of our Lagrangian at low
energy.

To the order we consider, we can integrate out massive
degree of freedom by replacing the massive fields by their
zeroth-order solutions:

Vµ → 1
g
iΓµ ,

Aµ → r

g
i∆µ . (20)

Then the resulting effective Lagrangian has the form

L = L(π)
+

1
2g2

〈(Γµν + r2G[∆µ,∆ν ])2〉+ r2

2g2
〈∆2

µν〉 (21)

with

∆µν = ∂µ∆ν − ∂ν∆µ + [Γµ,∆ν ]− [Γ ν ,∆µ]

= − i
2
(ξ†Fµν

R ξ − ξFµν
L ξ†) ,

Γµν = ∂µΓ ν − ∂νΓµ + [Γµ, Γ ν ]

= −[∆µ,∆ν ]− i

2
(ξ†Fµν

R ξ − ξFµν
L ξ†) (22)

and

Fµν
L,R = ∂µ(vν ∓ aν)− ∂ν(vµ ∓ aµ)

−i[vµ ∓ aµ, vν ∓ aν ] . (23)

For easy comparison, we list the contributions to the co-
efficient of L4:

LV
1 =

1
32g2

(1−Gr2)2, LV
2 = 2L

V
1 , L

V
3 = −6LV

1 ,

LV
9 =

1
4g2

(1−Gr2)2, LV
10 = − 1

4g2
,HV

1 =
1
2
LV

10,

LA
10 =

r2

4g2
,HA

1 = −1
2
LA

10, (24)
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which are equivalent with Ecker et al.’s expressions (eqs.
(5.6) and (5.9) of ref. [6]) with the following correspon-
dence of parameters between the two formulas:

g ←→ MV

FV
,

Gr2 ←→ FV − 2GV

FV
,

r ←→ FA

FV

MV

MA
, (25)

where FV, GV, FA,MV � mV and MA � mA are the pa-
rameters introduced by them.

3 Pion and kaon electromagnetic form factor

The pion form factor in the time-like region is dominated
by the ρ-meson resonance. Similarly to the pion the kaon
form factor is influenced mainly by the φ-meson. But the
contribution of ρ-ω meson mixing is also important. With
the effective Lagrangian in section 2, we improve the anal-
ysis of both form factors. The pseudoscalar meson loops
are also taken into account.

3.1 The ρ-meson self-energy

From the effective Lagrangian, the V -π interaction term
(the 2nd term in eq. (18)) generates a vector current of
pion as

Jµ
had = i(π+∂µπ− − π−∂µπ+) . (26)

This coupling to the ρ-meson field produces the self-energy
as shown in fig. 1, which is calculated as

−iΠµν = g2
ρππ

×
∫

d4p

(2π)4
(2p− q)µ(2p− q)ν

(p2 −m2
π + iε)((p− q)2 −m2

π + iε)
. (27)

The ρ-meson coupling to a conserved current implies that
the self-energy is transverse, i.e.,

qµΠ
µν(q) = qνΠ

µν(q) = 0. (28)

This property, combined with Lorentz invariance, uniquely
determines the tensor structure of the self-energy

Πµν = (−gµν +
qµqν

q2
)Π(q2). (29)

The full propagator of the ρ-meson is then given as

Dµν =
1

q2 − ṁ2
ρ −Πρ

(−gµν +
qµqν

q2
) +

1
ṁ2

ρ

qµqν

q2
. (30)

Here, the bare ρ-meson mass, ṁρ, is introduced so that
its physical mass is given by

m2
ρP = ṁ2

ρ +Re[Πρ(q2 = m2
ρ)]. (31)

Since the full propagator of the ρ-meson is given by eq.
(30), the ρ→ ππ decay width at resonance is given as

Γρ→ππ = −ImΠρ(q2 = m2
ρ)/mρ. (32)

π

p

 q-p

ρ ρ

Fig. 1. ρ-meson self-energy.

3.2 Regularization

To calculate the self-energy of fig. 1, we use a Pauli-Villars
regularization method [10]. The regularized self-energy is
given as

Πµν(q) = Π̃µν(q,mπ)−
∑

BiΠ̃
µν(q, Λi) . (33)

Once the fictitious higher masses Λi are fixed, the coeffi-
cients Bi are determined by requiring that the self-energy
be finite. Since this term, in its unregularized form, is
quadratically divergent, we need two subtractions and ob-
tain

B1 =
Λ2

2 −m2
π

Λ2
2 − Λ2

1

, B2 =
Λ2

1 −m2
π

Λ2
1 − Λ2

2

. (34)

Then, from the conditions that Λ2 goes to infinity and Λ1

is fixed to 1 GeV, the regularized self-energy is obtained
as follows:

Re[Π] = − g
2
ρππ

24π2
q2

×
(
G(q,mπ)− G(q, Λ1) + 4(Λ2

1 −m2
π)/q

2 + ln(
Λ1

mπ
)
)
,

Im[Π] = −g
2
ρππ

48π
q2

×
(
(1− 4m

2
π

q2
)3/2Θ(q2−4m2

π)−(1−
4Λ2

1

q2
)3/2Θ(q2−4Λ2

1)
)
,

(35)

where

G = (4m
2
π

q2
− 1)3/2 arctan(

√
4m2

π

q2
− 1

−1

),

0 < q2 < 4m2
π

= −1
2
(1− 4m2

π

q2
)3/2 ln

√
4m2

π

q2 − 1 + 1√
4m2

π

q2 − 1− 1
,

4m2
π < q2, q2 < 0.

3.3 Renormalization

We consider a ρ-meson renormalization process. Expand-
ing the transverse part of the ρ-meson propagator around
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γ

π−

π+

+
γ ρ

+
γ ρπ

Fig. 2. Feynmann diagram of pion form factor with self-energy.

the physical mass mρ, we have

1
q2 − ṁ2

ρ −Πρ(q2)
≈ Z

(q2 −m2
ρ)− iZImΠρ(q2)

, (36)

where Z is a renormalization constant given by

Z =
(
1− d

dq2
ReΠρ(q2) |(q2=m2

ρ)

)−1
. (37)

Here we introduce a bare coupling constant ġρππ which is
related to the physical coupling constant gρππ by ġρππ =
Z1/2gρππ. With the condition Z = 1, which means that
the real part of the self-energy is completely absorbed by
shifting the bare mass ṁρ to its physical valuemρ with the
coupling constant gρππ left unaltered, we can determine a
new condition

d
dq2

ReΠρ |(q2=m2
ρ)= 0. (38)

In order to satisfy this condition, we need to add an arbi-
trary constant term cπq

2 in the real part of the self-energy,
where cπ is given by

cπ =
5.774(g −Gr2)2

g4
. (39)

3.4 Pion electromagnetic form factor

The electromagnetic pion form factor is defined by the
following matrix element:

〈π±(k′)|Jem
µ (0)|π±(k)〉 = ±(k + k′)µFπ(q2). (40)

The leading term of Fπ(q2) obtained from Lγπ, LγV , (3rd
and 5th terms, respectively) in the Lagrangian, is ex-
pressed in the following way:

F (o)
π (q2) = 1− gρππ

g

q2

q2 −m2
ρ + imρΓρ

, (41)

where g is a bare coupling constant which does not con-
sider the loop effect.mρ and ṁρ are means of ρ-meson and
bare ρ-meson, respectively. The relation of both masses is
given by eq. (31).

Introducing the ρππ self-energy in fig. 2, we obtained

Fπ(q2) = 1− gρππ

g

q2

q2 − ṁ2
ρ −Πρ

+
Πρ

q2 − ṁ2
ρ −Πρ

= 1− gρππ

g(q2)
q2

q2 − ṁ2
ρ −Πρ

. (42)

+
ρ γ e+

e-

ρ γ e+

e-

Π

Fig. 3. ρ-meson decay.

300 500 700 900 1100
q
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20

30

40
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Fπ|2

Barkov 85

ρ−ω mixing

one loop

VMD

|

Fig. 4. Pion electromagnetic form factor in the time-like re-
gion: solid, dotted and dashed lines represent eqs.(45), (42) and

(41), respectively. Here q means
√

q2.

Note that not only the ρ-meson propagator, but also
γ-ρ coupling is modified by the pion loop as shown in fig. 3
as follows:

− eq2

g(q2)
= −eq

2

g
+
eΠρ

gρππ
. (43)

The constant g determined from the experimental
ρ → e+e− decay width should be compared with
Re[g(q2)]q2=m2

ρ
. Using Re[g(q2)]q2=m2

ρ
and experimental

results of Γρ→ππ, we find g and β = Gr2 values. When g
is 5.36 and β is 0.32, gρππ goes to 6.037. Under universal-
ity (gρππ = gργ) used in the VMD model, the prediction
of the pion form factor is underestimated compared to the
experimental values. Brown et al. [13] allow its violation,
i.e. gρππ/gργ = 1.2 by considering the intrinsic size due to
the vector meson. In the papers, for example of Brown [13]
and Klingl [12], this contribution is attributed to those of
vector mesons, which are incorporated by the gauge fields
in the hidden gauge symmetry approach, while in this pa-
per these fields are introduced explicitly using the non-
linear realization of the chiral symmetry exploited origi-
nally by Weinberg.

Using eqs. (31) and (32), we also find physical mass
and decay width:

mρP≈771MeV, Γρ→ππ ≈150MeV, ṁρ≈808MeV. (44)



274 The European Physical Journal A

0.15 0.1 0.05

q 2(GeV2)

0.5

0.6

0.7

0.8

0.9

1

Fπ|
2

Amendolia 84

|

Fig. 5. Pion electromagnetic form factor in the space-like re-
gion.

Finally, the inclusion of ρ-ω mixing turned out to give
another factor to eq. (42) in the following way:

Fπ(q2) = (1− gρππ

g(q2)
q2

q2 − ṁ2
ρ −Πρ

)

×(1 + g(q2)
gω

zρω

q2 −m2
ω − imωΓω

). (45)

The ω-meson width Γω = 8.4MeV is used and the
mixing parameter zρω = −4.52 × 10−3GeV2 from ref.
[12] is also exploited. The corresponding optimal result
for Fπ(q2) compared with experimental data [15] is shown
in fig. 4. The dashed line plots eq. (41), which corresponds
to the VMD model prediction. The dotted line plots eq.
(42), i.e. one-loop correction is included, while the solid
line represents eq. (45) in which the ρ-ω mixing contribu-
tion is taken into account.

The form factor in the space-like region (q2 < 0) is also
given in fig. 5. Our approach gives a good agreement with
the experimental result [14]. The squared pion charged
radius becomes

〈r2π〉 = 6
dFπ

dq2
|q2=0

=
6
ṁ2

ρ

(
gρπ+π−

g
− cπ +

g2
ρπ+π−

24π2
ln(

Λ1

mπ
))

= 0.447 fm2. (46)

Using the constants determined before, eq. (46) yields
a good agreement with the experimental value 〈r2π〉 =
(0.44 ± 0.01) fm2. From KSRF relation ṁ2

ρ = 2g2
ρππf

2
π ,

the mean square radius of the pion becomes

〈r2π〉 = (
1

4πfπ
)2 ln(

Λ2
1

m2
π

) + const . (47)

Therefore, in the chiral limit (mπ → 0), the pion radius di-
verges logarithmically, which is consistent with ChPT [12].

3.5 Kaon electromagnetic form factor

The electromagnetic form factor of a charged kaon is also
defined by

〈K±(k′)|Jem
µ (0)|K±(k)〉 = ±(k + k′)µFK(q2). (48)

The leading behavior of FK(q2) is obtained just by tran-
scribing the previous formalism developed for Fπ(q2) in
eq. (42) and replacing the ρ-meson by the φ-meson and
the pion loop by the kaon loop. It leads to yield the fol-
lowing result:

FK(q2) = 1+
√
2
3

gφK+K−

g

q2

q2 − ṁ2
φ −Πφ

+
Πφ→K+K−

q2 − ṁ2
φ −Πφ

= 1 +
√
2
3

gφK+K−

g(q2)
q2

q2 − ṁ2
φ −Πφ

, (49)

where the φ-meson self-energy has the contributions not
only from K+K− but also from K0

LK
0
S , i.e.,

Πφ = Πφ→K+K− +Πφ→K0
LK0

S
. (50)

The photon coupling of the φ-meson is also modified
by means of the charged kaon loop including the renor-
malization

1
gφ(q2)

=
1
g
+

3√
2

Πφ→K+K−

gφK+K−q2
. (51)

Considering the additional contributions of both ρ-meson
and ω-meson, we obtain the final form of the charged kaon
form factor

FK(q2) = 1 +
√
2
3

gφK+K−

gφ(q2)
q2

q2 − ṁ2
φ −Πφ

−gρK+K−

gρ(q2)
q2

q2 − ṁ2
ρ −Πρ

−4
3
gωK+K−

gω(q2)
q2

q2 − ṁ2
ω −Πω

. (52)

Figure 6 shows the charged kaon form factor at the
time-like region compared with experimental data [16].
Here the coupling constant Re[gφ(q2)] is approximately
6.5; and the physical φ-meson mass and the φ→ K+K−,
φ→ K0

SK
0
L decay widths are given by

mφP ≈ 1019MeV, ṁφ ≈ 940MeV,
Γφ→K+K− ≈ 2.32MeV, Γφ→K0

SK0
L
≈ 1.517MeV.

The kaon form factor in the space-like region q2 < 0 is
shown in fig. 7. The final inclusion of the ρ- and ω-meson
contributions successfully reproduces the experimental re-
sults [17]. The calculation of the mean square radius of
the charged kaon is also successfully performed with the
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Fig. 7. Kaon electromagnetic form factor in the space-like
region.

ρ- and ω-meson contribution

〈rK±〉 = 6dFK

dq2
|q2=0

=
6
ṁ2

ρ

(
gρK+K−

g
− cρK +

g2
ρK+K−

24π2
ln(

Λ1

mK
))

+
6
ṁ2

ω

(
4
3
gωK+K−

g
− cωK +

g2
ωK+K−

24π2
ln(

Λ1

mK
))

− 6
ṁ2

φ

(
√
2
3

gφK+K−

g
+ cφK −

g2
φK+K−

24π2
ln(

Λ1

mK
))

= 0.332 fm2 , (53)

where cρK , cωK and cφK determined from the renormal-
ization condition eq. (38) are cρK = 0.0308, cωK = 0.0175
and cφK = 0.171. This value agrees well with the experi-
mental value [17]

〈r2K±〉 = (0.34± 0.05) fm2. (54)

As in the pion case, in the chiral limit, the mean squared
radius of the charged kaon also diverges logarithmically.

Finally, the neutral kaon mean square radius is ex-
plored. It is obtained from eq. (53) replacing the K

+
K

−

coupling by K0
LK

0
S . The sign for the ρ-meson contribution

is changed as gρK0
LK0

S
= −gρK+K− = 0.201, while the

φ-meson contribution remains as gφK0
LK0

S
= gφK+K− =

−4.72. But, from nonet mixing, the ω-meson contribution
in the case of neutral kaon is different from that of the
charged kaon as follows:

gωK+K− =
(m2

φ +m
2
ω)

4gf2
K

(1− βωK

g
) = 1.51 ,

gωK0
LK0

S
=
(m2

φ −m2
ω)

4gf2
K

(1− βωK

g
) = 0.17 . (55)

These constants play an important role in understanding
the mean square radii of both neutral and charged kaon.
The final form of the mean square radius of the neutral
kaon is given as

〈rK0〉 = 6dFK

dq2
|q2=0

= − 6
ṁ2

ρ

(
gρK0

LK0
S

g
+ cρK0 − gρK0

LK0
S

24π2
ln(

Λ1

mK
))

+
6
ṁ2

ω

(
4
3

gωK0
LK0

S

g
− cωK0 +

gωK0
LK0

S

24π2
ln(

Λ1

mK
))

− 6
ṁ2

φ

(
√
2
3

gφK0
LK0

S

g
+ cφK0 −

g2
φK0

LK0
S

24π2
ln(

Λ1

mK
))

= −0.0549 fm2 . (56)

The different role of the intermediate ω-meson contribu-
tion to K0 perfectly reproduces the empirical value [19]

〈r2K0〉 = (−0.054± 0.0026) fm2 . (57)

4 Conclusion

We extended a chiral effective Lagrangian by including
the vector and the axial-vector mesons as well as pions to
SUR(3)⊗SUL(3). The meson fields are introduced through
the non-linear realization of chiral symmetry, which pro-
vides an easy way of imposing consistency with the ChPT.
In order to have mass splitting of strange and non-strange
particles, the interactions between scalar mesons and each
meson, i.e, vector, axial-vector, and pseudoscalar mesons,
are taken into account.

For the phenomenological side of this Lagrangian, pion
and kaon electromagnetic form-factors and some related
decays are calculated. In the process of calculating, our ef-
fective Lagrangian is shown to give a good agreement with
experimental data without considering the effects from the
higher orders in other effective theories.

This work was supported in part by the Korea Research Foun-
dation.
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